3.13.47 \(\int \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [1247]

Optimal. Leaf size=129 \[ \frac {2 a (7 A+5 B+15 C) \sin (c+d x)}{15 d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}}+\frac {2 (A+5 B) \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{15 d}+\frac {2 A \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{5 d} \]

[Out]

2/15*a*(7*A+5*B+15*C)*sin(d*x+c)/d/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2)+2/5*A*cos(d*x+c)^(3/2)*sin(d*x+c)*(
a+a*sec(d*x+c))^(1/2)/d+2/15*(A+5*B)*sin(d*x+c)*cos(d*x+c)^(1/2)*(a+a*sec(d*x+c))^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.32, antiderivative size = 129, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.089, Rules used = {4350, 4171, 4098, 3889} \begin {gather*} \frac {2 a (7 A+5 B+15 C) \sin (c+d x)}{15 d \sqrt {\cos (c+d x)} \sqrt {a \sec (c+d x)+a}}+\frac {2 (A+5 B) \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \sec (c+d x)+a}}{15 d}+\frac {2 A \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{5 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^(5/2)*Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(2*a*(7*A + 5*B + 15*C)*Sin[c + d*x])/(15*d*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Sec[c + d*x]]) + (2*(A + 5*B)*Sqrt[C
os[c + d*x]]*Sqrt[a + a*Sec[c + d*x]]*Sin[c + d*x])/(15*d) + (2*A*Cos[c + d*x]^(3/2)*Sqrt[a + a*Sec[c + d*x]]*
Sin[c + d*x])/(5*d)

Rule 3889

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Simp[-2*a*(Co
t[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]])), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^
2, 0]

Rule 4098

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Dist[(
a*A*m - b*B*n)/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, A
, B, m, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] &&  !LeQ[m, -1]

Rule 4171

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*
Csc[e + f*x])^n/(f*n)), x] - Dist[1/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m -
b*B*n - b*(A*(m + n + 1) + C*n)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, m}, x] && EqQ[a^2 -
 b^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -2^(-1)] || EqQ[m + n + 1, 0])

Rule 4350

Int[(cos[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cos[a + b*x])^m*(c*Sec[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sec[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps

\begin {align*} \int \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {5}{2}}(c+d x)} \, dx\\ &=\frac {2 A \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{5 d}+\frac {\left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+a \sec (c+d x)} \left (\frac {1}{2} a (A+5 B)+\frac {1}{2} a (2 A+5 C) \sec (c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx}{5 a}\\ &=\frac {2 (A+5 B) \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{15 d}+\frac {2 A \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{5 d}+\frac {1}{15} \left ((7 A+5 B+15 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+a \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx\\ &=\frac {2 a (7 A+5 B+15 C) \sin (c+d x)}{15 d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}}+\frac {2 (A+5 B) \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{15 d}+\frac {2 A \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{5 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.21, size = 82, normalized size = 0.64 \begin {gather*} \frac {2 \sqrt {\cos (c+d x)} \left (8 A+10 B+15 C+(4 A+5 B) \cos (c+d x)+3 A \cos ^2(c+d x)\right ) \sqrt {a (1+\sec (c+d x))} \sin (c+d x)}{15 d (1+\cos (c+d x))} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^(5/2)*Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(2*Sqrt[Cos[c + d*x]]*(8*A + 10*B + 15*C + (4*A + 5*B)*Cos[c + d*x] + 3*A*Cos[c + d*x]^2)*Sqrt[a*(1 + Sec[c +
d*x])]*Sin[c + d*x])/(15*d*(1 + Cos[c + d*x]))

________________________________________________________________________________________

Maple [A]
time = 0.20, size = 89, normalized size = 0.69

method result size
default \(-\frac {2 \left (-1+\cos \left (d x +c \right )\right ) \left (3 A \left (\cos ^{2}\left (d x +c \right )\right )+4 A \cos \left (d x +c \right )+5 B \cos \left (d x +c \right )+8 A +10 B +15 C \right ) \left (\sqrt {\cos }\left (d x +c \right )\right ) \sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}}{15 d \sin \left (d x +c \right )}\) \(89\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(5/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/15/d*(-1+cos(d*x+c))*(3*A*cos(d*x+c)^2+4*A*cos(d*x+c)+5*B*cos(d*x+c)+8*A+10*B+15*C)*cos(d*x+c)^(1/2)*(a*(1+
cos(d*x+c))/cos(d*x+c))^(1/2)/sin(d*x+c)

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 321 vs. \(2 (111) = 222\).
time = 0.64, size = 321, normalized size = 2.49 \begin {gather*} \frac {\sqrt {2} {\left (30 \, \cos \left (\frac {4}{5} \, \arctan \left (\sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ), \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right )\right )\right ) \sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ) + 5 \, \cos \left (\frac {2}{5} \, \arctan \left (\sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ), \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right )\right )\right ) \sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ) - 30 \, \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ) \sin \left (\frac {4}{5} \, \arctan \left (\sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ), \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right )\right )\right ) - 5 \, \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ) \sin \left (\frac {2}{5} \, \arctan \left (\sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ), \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right )\right )\right ) + 6 \, \sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ) + 5 \, \sin \left (\frac {3}{5} \, \arctan \left (\sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ), \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right )\right )\right ) + 30 \, \sin \left (\frac {1}{5} \, \arctan \left (\sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ), \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right )\right )\right )\right )} A \sqrt {a} + 120 \, \sqrt {2} C \sqrt {a} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right ) - 10 \, {\left (3 \, \sqrt {2} \cos \left (\frac {3}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right ) \sin \left (d x + c\right ) - {\left (3 \, \sqrt {2} \cos \left (d x + c\right ) + 2 \, \sqrt {2}\right )} \sin \left (\frac {3}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right ) - 3 \, \sqrt {2} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right )\right )} B \sqrt {a}}{60 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

1/60*(sqrt(2)*(30*cos(4/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c)))*sin(5/2*d*x + 5/2*c) + 5*cos(2/
5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c)))*sin(5/2*d*x + 5/2*c) - 30*cos(5/2*d*x + 5/2*c)*sin(4/5*
arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) - 5*cos(5/2*d*x + 5/2*c)*sin(2/5*arctan2(sin(5/2*d*x + 5/
2*c), cos(5/2*d*x + 5/2*c))) + 6*sin(5/2*d*x + 5/2*c) + 5*sin(3/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x +
5/2*c))) + 30*sin(1/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))))*A*sqrt(a) + 120*sqrt(2)*C*sqrt(a)*
sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) - 10*(3*sqrt(2)*cos(3/2*arctan2(sin(d*x + c), cos(d*x + c)))*sin(
d*x + c) - (3*sqrt(2)*cos(d*x + c) + 2*sqrt(2))*sin(3/2*arctan2(sin(d*x + c), cos(d*x + c))) - 3*sqrt(2)*sin(1
/2*arctan2(sin(d*x + c), cos(d*x + c))))*B*sqrt(a))/d

________________________________________________________________________________________

Fricas [A]
time = 2.37, size = 84, normalized size = 0.65 \begin {gather*} \frac {2 \, {\left (3 \, A \cos \left (d x + c\right )^{2} + {\left (4 \, A + 5 \, B\right )} \cos \left (d x + c\right ) + 8 \, A + 10 \, B + 15 \, C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{15 \, {\left (d \cos \left (d x + c\right ) + d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

2/15*(3*A*cos(d*x + c)^2 + (4*A + 5*B)*cos(d*x + c) + 8*A + 10*B + 15*C)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c
))*sqrt(cos(d*x + c))*sin(d*x + c)/(d*cos(d*x + c) + d)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(5/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)*(a+a*sec(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sqrt(a*sec(d*x + c) + a)*cos(d*x + c)^(5/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int {\cos \left (c+d\,x\right )}^{5/2}\,\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right ) \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^(5/2)*(a + a/cos(c + d*x))^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2),x)

[Out]

int(cos(c + d*x)^(5/2)*(a + a/cos(c + d*x))^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2), x)

________________________________________________________________________________________